PharmLabs San Diego Certificate of Analysis

3421 Hancock St, Second Floor, San Diego, CA 92110 | License: C8-0000098-LIC ISO/IEC 17025:2017 Certification L17-427-1 | Accreditation #85368

sample Flying Monkey - 2.0 Heavy Hitter Disposable - Mango Gelato - 0000261

Sample ID SD221021-014 (53937)		Matrix Concentrate (Inhalable Cannabis Good)
Tested for White Label Leaf		
Sampled -	Received Oct 21, 2022	Reported Oct 28, 2022
Analyses executed CANY		

Laboratory note: The estimated concentration of the unknown peak in the sample is 5.50% | Currently PharmLabs laboratory can not confirm an unidentified peak in your chromatogram due to interference (only with highly concentrated D8 products) from which we believe to be either (+)d8-THC or 49-THC. At this time there are no reference standards available for (+)d8-THC is a different compound from the main (-)d8-THC cannobinoid and, therefore, these two compounds may have different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC is not d9-THC in the separation of (+)d8-THC is not d9-THC in the separation of (+)d8-THC in the majority, if not all, of the concentration being (+)d8-THC. Total d8-THC is estimated to be 50.44%.

LOQ

CANX - Cannabinoids Analysis

Analyzed Oct 28, 2022 | Instrument HLPC Measurement Uncertainty at 95% confidence**7.806**%

Analyte	mg/g	mg/g	%	mg/g
11-Hydroxy-Δ8-Tetrahydrocannabivarin (11-Hyd-Δ8-THCV)	0.013	0.041	ND	ND
Cannabidiorcin (CBDO)	0.002	0.007	ND	ND
Abnormal Cannabidiorcin (a-CBDO)	0.01	0.031	ND	ND
(+/-)-9B-hydroxy-Hexahydrocannibinol (9b-HHC)	0.012	0.036	ND	ND
11-Hydroxy-Δ8-Tetrahydrocannabinol (11-Hyd-Δ8-THC)	0.007	0.021	ND	ND
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND
Cannabigerol Acid (CBGA)	0.001	0.16	ND	ND
Cannabigerol (CBG)	0.001	0.16	ND	ND
Cannabidiol (CBD)	0.001	0.16	ND	ND

Abnormal Cannabidiorcin (a-CBDO)	0.01	0.031	ND	ND
(+/-)-9B-hydroxy-Hexahydrocannibinol (9b-HHC)	0.012	0.036	ND	ND
11-Hydroxy-Δ8-Tetrahydrocannabinol (11-Hyd-Δ8-THC)	0.007	0.021	ND	ND
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND
Cannabigerol Acid (CBGA)	0.001	0.16	ND	ND
Cannabigerol (CBG)	0.001	0.16	ND	ND
Cannabidiol (CBD)	0.001	0.16	ND	ND
1(S)-THD (s-THD)	0.013	0.041	ND	ND
1(R)-THD (r-THD)	0.025	0.075	ND	ND
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND
Δ8-tetrahydrocannabivarin (Δ8-THCV)	0.021	0.064	ND	ND
Tetrahydrocannabutol (Δ9-THCB)	0.013	0.038	ND	ND
Cannabinol (CBN)	0.001	0.16	0.30	3.00
exo-THC (exo-THC)	0.016	0.8	ND	ND
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	UI	UI
Δ8-tetrahydrocannabinol (Δ8-THC)	0.004	0.16	50.44	504.43
(6aR,9S)-Δ10-Tetrahydrocannabinol ((6aR,9S)-Δ10)	0.015	0.16	ND	ND
Hexahydrocannabinol (S Isomer) (9s-HHC)	0.017	0.16	ND	ND
(6aR,9R)-Δ10-Tetrahydrocannabinol ((6aR,9R)-Δ10)	0.007	0.16	4.84	48.41
Hexahydrocannabinol (R Isomer) (9r-HHC)	0.016	0.16	8.56	85.56
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	ND	ND
Δ9-Tetrahydrocannabihexol (Δ9-THCH)	0.024	0.071	ND	ND
Cannabinol Acetate (CBNO)	0.014	0.043	ND	ND
Δ9-Tetrahydrocannabiphorol (Δ9-THCP)	0.017	0.16	ND	ND
Δ8-Tetrahydrocannabiphorol (Δ8-THCP)	0.041	0.16	0.76	7.59
Δ8-THC-O-acetate (Δ8-THCO)	0.076	0.16	ND	ND
9(S)-HHCP (s-HHCP)	0.031	0.094	ND	ND
Δ9-THC-O-acetate (Δ9-THCO)	0.066	0.16	ND	ND

UI Not Identified
ND Not Detected
N/A Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
<LOQ Detected
JULQL Above upper limit of linearity
CFU/g Colonyl porming Units per 1 gram
TNTC Too Numerous to Count

9(R)-HHCP (r-HHCP)

Total THC (THCa * 0.877 + Δ 9THC)

Total CBD (CBDa * 0.877 + CBD)

Total CBG (CBGa * 0.877 + CBG)

Total HHC (9r-HHC + 9s-HHC)

Total Cannabinoids

3-octyl- Δ 8-Tetrahydrocannabinol (Δ 8-THC-C8)

Total THC + Δ8THC + Δ10THC (THCa * 0.877 + Δ9THC + Δ8THC + Δ10THC)

0.026

0.067

0.079

0.204

ND

ND

ND

55.28

ND

ND

8.56

64.90

ND

ND

ND

552.84

ND

ND

85.56

649.00

Authorized Signature

Brandon Starr

